NOT RECOMMENDED FOR NEW DESIGNS
Contact Linear Technology for Potential Replacement

500mA 2MHz Synchronous Step-Up DC/DC Converters in $2 \mathrm{~mm} \times 2 \mathrm{~mm}$ DFN

feATURES

- Delivers 3.3 V at 100 mA from a Single Alkaline/ NiMH Cell or 3.3 V at 200 mA from Two Cells
- $V_{I N}$ Start-Up Voltage: 850 mV
- $V_{\text {IN }}$ Operating Range: 0.5 V to 5 V
- 1.6 V to $5.25 \mathrm{~V} \mathrm{~V}_{\text {Out }}$ Range
- Up to 94% Efficiency
- Output Disconnect
- 2MHz Fixed Frequency Operation
- $\mathrm{V}_{\text {IN }}>\mathrm{V}_{\text {OUT }}$ Operation
- Integrated Soft-Start
- Current Mode Control with Internal Compensation
- Burst Mode® Operation with 9 9 A Quiescent Current (LTC3526-2)
- Low Noise PWM Operation (LTC3526B-2)
- Internal Synchronous Rectifier
- Logic Controlled Shutdown ($\mathrm{l}_{\mathrm{O}}<1 \mu \mathrm{~A}$)
- Anti-Ringing Control
- Low Profile ($2 \mathrm{~mm} \times 2 \mathrm{~mm} \times 0.75 \mathrm{~mm}$) DFN-6 Package

APPLICATIONS

- Medical Instruments
- Flash-Based MP3 Players
- Noise Canceling Headphones
- Wireless Mice
- Bluetooth Headsets

DESCRIPTIOn

The LTC®3526-2/LTC3526B-2 are synchronous, fixed frequency step-up DC/DC converters with output disconnect. Synchronous rectification enables high efficiency in the low profile $2 \mathrm{~mm} \times 2 \mathrm{~mm}$ DFN package. Battery life in single AA/AAA powered products is extended further with an 850 mV start-up voltage and operation down to 500 mV once started.
A switching frequency of 2 MHz minimizes solution footprint by allowing the use of tiny, low profile inductors and ceramic capacitors. The current mode PWM design is internally compensated, reducing external parts count. The LTC3526-2 features Burst Mode operation at light load conditions, while the LTC3526B-2 features continuous switching. Anti-ring circuitry eliminates EMI concerns by damping the inductor in discontinuous mode. Additional features include a low shutdown current of under $1 \mu \mathrm{~A}$ and thermal shutdown.
The LTC3526-2/LTC3526B-2 are housed in a 6 -pin $2 \mathrm{~mm} \times 2 \mathrm{~mm} \times 0.75 \mathrm{~mm}$ DFN package.
For new designs, we recommend the LTC3526L-2/ LTC3526LB-2.
$\boldsymbol{\boxed { } \boldsymbol { 7 }}$, LT, LTC, LTM, Linear Technology, the Linear logo and Burst Mode are registered trademarks and ThinSOT is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners. Patents pending.

TYPICAL APPLICATION

LTC3526-2 Efficiency and Power Loss vs Load Current

LTC3526-2/LTC3526B-2

absolute maximum ratings

PIn CONFIGURATION

(Note 1)

VIN Voltage -0.3 V to 6 V

SW Voltage
DC. -0.3 V to 6 V
Pulsed <100ns -0.3 V to 7 V
SHDN, FB Voltage 0.3 V to 6V
VOUT... 0.3 V to 6 V
Operating Temperature Range (Note 2) $\ldots-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

DC PACKAGE
6-LEAD ($2 \mathrm{~mm} \times 2 \mathrm{~mm}$) PLASTIC DFN
$T_{\text {JMAX }}=125^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=102^{\circ} \mathrm{C} / \mathrm{W}$ (NOTE 6) EXPOSED PAD (PIN 7) IS GND, MUST BE SOLDERED TO PC BOARD

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LTC3526EDC-2\#PBF	LTC3526EDC-2\#TRPBF	LCNM	6 -Lead $(2 \mathrm{~mm} \times 2 \mathrm{~mm})$ Plastic DFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC3526BEDC-2\#PBF	LTC3526BEDC-2\#TRPBF	LCNP	6 -Lead $(2 \mathrm{~mm} \times 2 \mathrm{~mm})$ Plastic DFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges.
Consult LTC Marketing for information on non-standard lead based finish parts.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the specified operating temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{I N}=1.2 \mathrm{~V}, \mathrm{~V}_{O U T}=3.3 \mathrm{~V}$ unless otherwise noted.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Minimum Start-Up Input Voltage	$\mathrm{L}_{\text {LOAD }}=1 \mathrm{~mA}$			0.85	1	V
Output Voltage Adjust Range	$0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	\bullet	$\begin{aligned} & 1.7 \\ & 1.6 \end{aligned}$		$\begin{aligned} & 5.25 \\ & 5.25 \end{aligned}$	V
Feedback Pin Voltage		\bullet	1.165	1.195	1.225	V
Feedback Pin Input Current	$\mathrm{V}_{\mathrm{FB}}=1.30 \mathrm{~V}$			1	50	nA
Quiescent Current-Shutdown	$V_{\text {SHDN }}=0 \mathrm{~V}$, Not Including Switch Leakage, $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$			0.01	1	$\mu \mathrm{A}$
Quiescent Current-Active	Measured on $\mathrm{V}_{\text {Out }}$, Nonswitching			250	500	$\mu \mathrm{A}$
Quiescent Current-Burst	Measured on $\mathrm{V}_{\text {OUT }}$, $\mathrm{FB}>1.230 \mathrm{~V}$ (LTC3526-2 Only)			9	18	$\mu \mathrm{A}$
N-Channel MOSFET Switch Leakage Current	$V_{S W}=5 \mathrm{~V}$			0.1	5	$\mu \mathrm{A}$
P-Channel MOSFET Switch Leakage Current	$\mathrm{V}_{\text {SW }}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$			0.1	10	$\mu \mathrm{A}$
N-Channel MOSFET Switch On Resistance	$\mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V}$			0.4		Ω
P-Channel MOSFET Switch On Resistance	$\mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V}$			0.6		Ω
N-Channel MOSFET Current Limit		\bullet	500	700		mA
Current Limit Delay to Output	(Note 3)			60		ns
Maximum Duty Cycle	$V_{\text {FB }}=1.15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$	\bullet	85	90		\%
Minimum Duty Cycle	$V_{\text {FB }}=1.3 \mathrm{~V}$	\bullet			0	\%
Switching Frequency		\bullet	1.8	2	2.4	MHz
$\overline{\text { SHDN }}$ Pin Input High Voltage			0.9			V
$\overline{\text { SHDN }}$ Pin Input Low Voltage					0.3	V
$\overline{\text { SHDN Pin Input Current }}$	$\begin{aligned} & V_{\overline{\text { SHDN }}}=1.2 \mathrm{~V} \\ & V_{\overline{\text { SHDN }}}=3.3 \mathrm{~V} \end{aligned}$			$\begin{gathered} 0.3 \\ 1 \end{gathered}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
						$35262 \mathrm{b2f}$
2						EAR

LTC3526-2/LTC3526B-2

eLECTRICAL CHARACTERISTICS

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: The LTC3526E-2 is guaranteed to meet performance specifications from $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. Specifications over $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ operating temperature range are assured by design, characterization and correlation with statistical process controls.
Note 3: Specification is guaranteed by design and not 100% tested in production.

Note 4: Current measurements are made when the output is not switching.
Note 5: This IC includes overtemperature protection that is intended to protect the device during momentary overload conditions. Junction temperature will exceed $125^{\circ} \mathrm{C}$ when overtemperature protection is active. Continuous operation above the specified maximum operating junction temperature may result in device degradation or failure.
Note 6: Failure to solder the exposed backside of the package to the PC board ground plane will result in a thermal resistance much higher than $102^{\circ} \mathrm{C} / \mathrm{W}$.

TYPICAL PERFORMANCE CHARACTERISTICS

LTC3526-2/LTC3526B-2

TYPICAL PERFORMANCE CHARACTERISTICS

35262 b 2 G 07

35262b2 G08a

Oscillator Frequency Change

 vs Temperature

Burst Mode Threshold Current vs $V_{\text {IN }}$

35262 b 2 GOPb
Oscillator Frequency Change vs $V_{\text {OUt }}$

$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ Change vs Temperature

LTC3526-2/LTC3526B-2

TYPICAL PERFORMANCE CHARACTERISTICS

Fixed Frequency Switching
Waveform and $\mathrm{V}_{\text {OUT }}$ Ripple

$\mathrm{V}_{\text {IN }}=1.2 \mathrm{~V} \quad 200 \mathrm{~ns} / \mathrm{DIV}$
$V_{\text {OUT }}=3.3 \mathrm{~V}$ AT 50 mA
$C_{\text {OUT }}=4.7 \mu \mathrm{~F}$

$\mathrm{V}_{\text {OUT }}$ and $\mathrm{I}_{\mathbb{N}}$ During Soft-Start

Load Step Response (from Burst Mode Operation)

Load Step Response
(Fixed Frequency)

LTC3526-2/LTC3526B-2

TYPICAL PERFORMANCE CHARACTERISTICS

PIn fUnCTIOnS

SW (Pin 1): Switch Pin. Connect inductor between SW and $\mathrm{V}_{\text {In. }}$. Keep PCB trace lengths as short and wide as possible to reduce EMI. If the inductor current falls to zero or SHDN is low, an internal anti-ringing switch is connected from SW to $\mathrm{V}_{\text {IN }}$ to minimize EMI.
GND (Pin 2): Signal and Power Ground. Provide a short direct PCB path between GND and the (-) side of the input and output capacitors.
V_{IN} (Pin 3): Input Supply Pin. Connect a minimum of $1 \mu \mathrm{~F}$ ceramic decoupling capacitor from this pin to ground using short direct PCB traces.
SHDN (Pin 4): Logic Controlled Shutdown Input. There is an internal $4 \mathrm{M} \Omega$ pull-down on this pin.

- $\overline{\text { SHDN }}=$ High: Normal operation
- $\overline{\text { SHDN }}=$ Low: Shutdown, quiescent current $<1 \mu \mathrm{~A}$

FB (Pin 5): Feedback Input to the g_{m} Error Amplifier.

Connectresistordivider tap to this pin. The top ofthe divider connects to the output capacitor, the bottom of the divider connects to GND. Referring to the Block Diagram, the output voltage can be adjusted from 1.6 V to 5.25 V by:

$$
V_{\text {OUT }}=1.195 \mathrm{~V} \cdot\left(1+\frac{\mathrm{R} 2}{R 1}\right)
$$

$\mathrm{V}_{\text {OUT }}$ (Pin 6): Outputvoltage sense and drain of the internal synchronous rectifier. PCB trace from $V_{\text {out }}$ to the output filter capacitor ($4.7 \mathrm{\mu}$ F minimum) should be as short and wide as possible.
GND (Exposed Pad Pin 7): The Exposed Pad must be soldered to the PCB ground plane. It serves as an additional ground connection and as a means of conducting heat away from the package.

LTC3526-2/LTC3526B-2

BLOCK DIAGRAM

OPERATIO (Refer to Block Diagram)

The LTC3526-2/LTC3526B-2 are2MHz synchronous boost converters housed in a 6-lead $2 \mathrm{~mm} \times 2 \mathrm{~mm}$ DFN package. With the ability to start up and operate from inputs less than 1 V , these devices feature fixed frequency, current mode PWM control for exceptional line and load regulation. The current mode architecture with adaptive slope compensation provides excellent transient load response, requiring minimal output filtering. Internal soft-start and internal loop compensation simplifies the design process while minimizing the number of external components.
With its low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ and low gate charge internal N -channel MOSFET switch and P-channel MOSFET synchronous rectifier, the LTC3526-2 achieves high efficiency over a wide
range of load currents. Automatic Burst Mode operation maintains high efficiency at very light loads, reducing the quiescent current to just $9 \mu \mathrm{~A}$. Operation can be best understood by referring to the Block Diagram.

LOW VOLTAGE START-UP

The LTC3526-2/LTC3526B-2 include an independent startup oscillator designed to start up at an input voltage of 0.85 V (typical). Soft-start and inrush current limiting are provided during start-up, as well as normal mode.
When either $\mathrm{V}_{\text {IN }}$ or $\mathrm{V}_{\text {OUT }}$ exceeds 1.4 V typical, the IC enters normal operating mode. When the output voltage

LTC3526-2/LTC3526B-2

OPERATION (Redert b Block Diagam)

exceeds the input by 0.24 V , the IC powers itself from $V_{\text {OUT }}$ instead of $V_{\text {IN }}$. At this point the internal circuitry has no dependency on the $\mathrm{V}_{\text {IN }}$ input voltage, eliminating the requirement for a large input capacitor. The input voltage can drop as low as 0.5 V . The limiting factor for the application becomes the availability of the power source to supply sufficient energy to the output at low voltages, and maximum duty cycle, which is clamped at 90% typical. Note that at low input voltages, small voltage drops due to series resistance become critical, and greatly limit the power delivery capability of the converter.

LOW NOISE FIXED FREQUENCY OPERATION

Soft-Start

The LTC3526-2/LTC3526B-2 contain internal circuitry to provide soft-start operation. The soft-start circuitry slowly ramps the peak inductor current from zero to its peak value of 700 mA (typical) in approximately 0.5 ms , allowing startup into heavy loads. The soft-start circuitry is reset in the event of a shutdown command or a thermal shutdown.

Oscillator

An internal oscillator sets the switching frequency to 2MHz.

Shutdown

Shutdown is accomplished by pulling the $\overline{\text { SHDN }}$ pin below 0.3 V and enabled by pulling the $\overline{\text { SHDN }}$ pin above 0.8 V typical. Although $\overline{\text { SHDN }}$ can be driven above $\mathrm{V}_{\text {IN }}$ or $V_{\text {OUT }}$ (up to the absolute maximum rating) without damage, the LTC3526-2/LTC3526B-2 have a proprietary test mode that may be engaged if $\overline{\mathrm{SHDN}}$ is held in the range of 0.5 V to 1 V higher than the greater of $\mathrm{V}_{\text {IN }}$ or $\mathrm{V}_{\text {OUT }}$. If the test mode is engaged, normal PWM switching action is interrupted, which can cause undesirable operation in some applications. Therefore, in applications where $\overline{\text { SHDN }}$ may be driven above V_{IN}, a resistor divider or other means must be employed to keep the SHDN voltage below $\left(\mathrm{V}_{\mathrm{IN}}+0.4 \mathrm{~V}\right)$ to prevent the possibility of the test mode being engaged. Please refer to Figure 1 for two possible implementations.

Figure 1. Recommended Shutdown Circuits when Driving SHDN above $V_{I N}$

Error Amplifier

The positive input of the transconductance error amplifier is internally connected to the 1.195 V reference and the negative input is connected to FB. Clamps limit the minimumand maximum error amp output voltage for improved large-signal transient response. Power converter control loop compensation is provided internally. An external resistive voltage divider from $V_{\text {OUT }}$ to ground programs the output voltage via FB from 1.6 V to 5.25 V .

$$
V_{\text {OUT }}=1.195 \mathrm{~V} \cdot\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)
$$

Current Sensing

Lossless current sensing converts the peak current signal of the N-channel MOSFET switch into a voltage that is summed with the internal slope compensation. The summed signal is compared to the error amplifier output to provide a peak current control command for the PWM.

Current Limit

The current limit comparator shuts off the N-channel MOSFET switch once its threshold is reached. The current limit comparator delay to output is typically 60 ns . Peak switch current is limited to approximately 700 mA , independent of input or output voltage, unless $\mathrm{V}_{\text {OUT }}$ falls below 0.7 V , in which case the current limit is cut in half.

Zero Current Comparator

The zero current comparator monitors the inductor current to the output and shuts off the synchronous rectifier

OPERATIO (Refer to Block Diagram)

when this current reduces to approximately 30 mA . This prevents the inductor current from reversing in polarity, improving efficiency at light loads.

Synchronous Rectifier

To control inrush current and to prevent the inductor current from running away when $\mathrm{V}_{\text {OUT }}$ is close to $\mathrm{V}_{\text {IN }}$, the P-channel MOSFET synchronous rectifier is only enabled when $\mathrm{V}_{\text {OUT }}>\left(\mathrm{V}_{\text {IN }}+0.24 \mathrm{~V}\right)$.

Anti-Ringing Control

The anti-ringing control connects a resistor across the inductor to prevent high frequency ringing on the SW pin during discontinuous current mode operation. Although the ringing of the resonant circuit formed by L and $C_{S W}$ (capacitance on SW pin) is low energy, it can cause EMI radiation.

Output Disconnect

The LTC3526-2/LTC3526B-2 are designed to allow true output disconnect by eliminating body diode conduction of the internal P-channel MOSFET rectifier. This allows for $V_{\text {Out }}$ to go to zero volts during shutdown, drawing no current from the input source. It also allows for inrush current limiting at turn-on, minimizing surge currents seen by the input supply. Note that to obtain the advantages of output disconnect, there must not be an external Schottky diode connected between the SW pin and $V_{\text {OUT }}$. The output disconnect feature also allows $\mathrm{V}_{\text {OUT }}$ to be pulled high, without any reverse current into a battery connected to V_{IN}.

Thermal Shutdown

If the die temperature exceeds $160^{\circ} \mathrm{C}$, the LTC3526-2/ LTC3526B-2 will go into thermal shutdown. All switches will be off and the soft-start capacitor will be discharged. The device will be enabled again when the die temperature drops by about $15^{\circ} \mathrm{C}$.

Burst Mode OPERATION

The LTC3526-2 will automatically enter Burst Mode operation at light load and return to fixed frequency PWM mode when the load increases. Refer to the Typical Performance Characteristics to see the output load Burst Mode threshold current vs $\mathrm{V}_{\text {IN }}$. The load current at which Burst Mode operation is entered can be changed by adjusting the inductor value. Raising the inductor value will lower the load current at which Burst Mode operation is entered.

In Burst Mode operation, the LTC3526-2 still switches at a fixed frequency of 2 MHz , using the same error amplifier and loop compensation for peak current mode control. This control method eliminates any output transient when switching between modes. In Burst Mode operation, energy is delivered to the output until it reaches the nominal regulation value, then the LTC3526-2 transitions to sleep mode where the outputs are off and the LTC3526-2 consumes only $9 \mu A$ of quiescent current from $V_{\text {OUT. When the }}$ output voltage droops slightly, switching resumes. This maximizes efficiency at very light loads by minimizing switching and quiescent losses. Burst Mode output voltage ripple, which is typically 1% peak-to-peak, can be reduced by using more output capacitance ($10 \mu \mathrm{~F}$ or greater), or with a small capacitor (10 pF to 50 pF) connected between $V_{\text {OUt }}$ and FB.
As the load current increases, the LTC3526-2 will automatically leave Burst Mode operation. Note that larger output capacitor values may cause this transition to occurat lighter loads. Once the LTC3526-2 has left Burst Mode operation and returned to normal operation, it will remain there until the output load is reduced below the burst threshold.
Burst Mode operation is inhibited during start-up and softstart and until $\mathrm{V}_{\text {OUT }}$ is at least 0.24 V greater than $\mathrm{V}_{\text {IN }}$.

The LTC3526B-2 features continuous PWM operation at 2 MHz . At very light loads, the LTC3526B-2 will exhibit pulse-skip operation.

APPLICATIONS InFORMATION

$\mathrm{V}_{\text {IN }}>\mathrm{V}_{\text {OUT }}$ OPERATION

The LTC3526-2/LTC3526B-2 will maintain voltage regulation even when the input voltage is above the desired output voltage. Note that the efficiency is much lower in this mode, and the maximum output current capability will be less. Refer to the Typical Performance Characteristics.

SHORT-CIRCUIT PROTECTION

The LTC3526-2/LTC3526B-2 output disconnect feature allows output short circuit while maintaining a maximum internally set current limit. To reduce power dissipation under short-circuit conditions, the peak switch current limit is reduced to 400 mA (typical).

SCHOTTKY DIODE

Although it is not required, adding a Schottky diode from SW to $\mathrm{V}_{\text {OUT }}$ will improve efficiency by about 2%. Note that this defeats the output disconnect and short-circuit protection features.

PCB LAYOUT GUIDELINES

The high speed operation of the LTC3526-2/LTC3526B-2 demands careful attention to board layout. A careless layout will result in reduced performance. Figure 2 shows the recommended component placement. A large ground pin copper area will help to lower the die temperature. A multilayer board with a separate ground plane is ideal, but not absolutely necessary.

COMPONENT SELECTION

Inductor Selection

The LTC3526-2/LTC3526B-2 can utilize small surface mount chip inductors due to their fast 2 MHz switching frequency. Inductor values between $1.5 \mu \mathrm{H}$ and $3.3 \mu \mathrm{H}$ are suitable for most applications. Larger values of inductance will allow slightly greater output current capability (and lower the Burst Mode threshold) by reducing the inductor ripple current. Increasing the inductance above $10 \mu \mathrm{H}$ will increase size while providing little improvement in output current capability.
The minimum inductance value is given by:

$$
\mathrm{L}>\frac{\mathrm{V}_{\text {IN(MININ }} \cdot\left(\mathrm{V}_{\text {OUT(MAX) }}-\mathrm{V}_{\text {IN(MIN) })}\right)}{2 \cdot \operatorname{RIPPLE} \cdot \mathrm{~V}_{\text {OUT(MAX) }}}
$$

where:
Ripple = Allowable inductor current ripple (amps peakpeak)

$$
\begin{aligned}
& V_{\text {IN(MIN })}=\text { Minimum input voltage } \\
& V_{\text {OUT(MAX) }}=\text { Maximum output voltage }
\end{aligned}
$$

The inductor current ripple is typically set for 20% to 40% of the maximum inductor current. High frequency ferrite core inductor materials reduce frequency dependent power losses compared to cheaper powdered iron types, improving efficiency. The inductor should have low ESR (series resistance of the windings) to reduce the ${ }^{2} \mathrm{R}$ power losses, and must be able to support the peak

Figure 2. Recommended Component Placement for Single Layer Board

LTC3526-2/LTC3526B-2

APPLICATIONS INFORMATION

inductor current without saturating. Molded chokes and some chip inductors usually do not have enough core area to support the peak inductor currents of 700 mA seen on the LTC3526-2/LTC3526B-2. To minimize radiated noise, use a shielded inductor. See Table 1 for suggested components and suppliers.

Table 1. Recommended Inductors

VENDOR	PART/STYLE
Coilcraft	LPO4815
(847) 639-6400	LPS4012, LPS4018
www.coilcraft.com	MSS5131
	MSS4020
	MOS6020
	ME3220
	DS1605, D01608
Coiltronics	SD10, SD12, SD14, SD18, SD20,
www.cooperet.com	SD52, SD3114, SD3118
FDK	MIP3226D4R7M, MIP3226D3R3M
(408) 432-8331	MIPF2520D4R7
www.fdk.com	MIPWT3226D3R0
Murata	LQH43C
(714) 852-2001	LQH32C (-53 series)
www.murata.com	301015
Sumida	CDRH5D18
(847) 956-0666	CDRH2D14
www.sumida.com	CDRH3D16
	CDRH3D11
	CR43
CMD4D06-4R7MC	
Caiyo-Yuden	CMD4D06-3R3MC
www.t-yuden.com	NP03SB
TDK	NR3015T
(847) 803-6100	NR3012T
www.component.tdk.com	VLP
Toko	VLF, VLCF
(408) 432-8282	
www.tokoam.com	D412C
Wurth	D518LC
(201) 785-8800	D52LC
www.we-online.com	D62LCB

Table 2. Capacitor Vendor Information

SUPPLIER	PHONE	WEBSITE
AVX	(803) 448-9411	www.avxcorp.com
Murata	$(714) 852-2001$	www.murata.com
Taiyo-Yuden	(408) 573-4150	www.t-yuden.com
TDK	(847) 803-6100	www.component.tdk.com
Samsung	(408) 544-5200	www.sem.samsung.com

LTC3526-2/LTC3526B-2

TYPICAL APPLICATIONS

1-Cell to 1.8 V Converter with <1mm Maximum Height for Low-Noise Applications

*FDK MIPF2520D2R2
**MURATA GRM219R60J475KE19D

1-Cell to 3.3V

2-Cell to $3.3 V$

TYPICAL APPLICATIONS
2-Cell to 5V

*TAIYO-YUDEN NP03SB3R3M

Li-Ion to 5V

*TAIYO-YUDEN NP03SB3R3M

35262b2 TA08b

LTC3526-2/LTC3526B-2

PACKAGE DESCRIPTION

DC Package
6-Lead Plastic DFN ($2 \mathrm{~mm} \times 2 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1703 Rev B)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS

NOTE:

1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE MO-229 VARIATION OF (WCCD-2)
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15 mm ON ANY SIDE
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE

REVISION HISTORY (Revision history begins at Rev c)

REV	DATE	DESCRIPTION	PAGE NUMBER
C	$9 / 10$	Updated $\theta_{\text {JA }}$ on Pin Configuration	2
		Updated Note 6	3
		Updated Shutdown section	8
		Updated Related Parts	16

LTC3526-2/LTC3526B-2

TYPICAL APPLICATION

3.3V Converter with Output OR'd with 5V USB Input

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC3526/LTC3526B LTC3526L/LTC3526LB LTC3526L-2/LTC3526LB-2	$500 \mathrm{~mA}, 1 \mathrm{MHz} / 2.2 \mathrm{MHz}$, Synchronous Step-Up DC/DC Converters with Output Disconnect	94% Efficiency $\mathrm{V}_{\text {IN }}: 0.85 \mathrm{~V}$ to $5 \mathrm{~V}, \mathrm{~V}_{\text {OUt(MAX }}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=9 \mu \mathrm{~A}$, $\mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}, 2 \mathrm{~mm} \times 2 \mathrm{~mm}$ DFN-6 Package
LTC3525L-3	400mA Micropower Synchronous Step-Up DC/DC Converter with Output Disconnect	93% Efficiency $\mathrm{V}_{\text {IN }}: 0.88 \mathrm{~V}$ to $4.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=7 \mu \mathrm{~A}$, $\mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}, \mathrm{SC}-70$ Package
$\begin{aligned} & \text { LTC3525-3 } \\ & \text { LTC3525-3.3 } \\ & \text { LTC3525-5 } \end{aligned}$	400mA Micropower Synchronous Step-Up DC/DC Converter with Output Disconnect	95% Efficiency V_{IN} : 1 V to $4.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX }}=3.3 \mathrm{~V}$ or $5 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=7 \mu \mathrm{~A}$, $\mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}, \mathrm{SC}-70$ Package
LTC3427	$500 \mathrm{~mA} \mathrm{I}_{\mathrm{SW}}, 1.2 \mathrm{MHZ}$, Synchronous Step-Up DC/DC Converter with Output Disconnect	93% Efficiency $\mathrm{V}_{\text {IN: }}$: 1.8 V to 4.5 V , $\mathrm{V}_{\text {OUT(MAX) }}=5 \mathrm{~V}$, $2 \mathrm{~mm} \times 2 \mathrm{~mm}$ DFN Package
LTC3400/LTC3400B	$600 \mathrm{~mA} \mathrm{I}_{\text {SW }}, 1.2 \mathrm{MHz}$, Synchronous Step-Up DC/DC Converters	92% Efficiency $\mathrm{V}_{\text {IN: }}$: 1 V to $5 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX }}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=19 \mu \mathrm{~A} / 300 \mu \mathrm{~A}$, $\mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}$, ThinSOTTM Package
LTC3527/LTC3527-1	Dual $600 \mathrm{~mA} / 400 \mathrm{~mA} \mathrm{I}_{\mathrm{SW}}, 1.2 \mathrm{MHz} / 2.2 \mathrm{MHz}$ Synchronous Step-Up DC/DC Converters	94% Efficiency $\mathrm{V}_{\text {IN }}: 0.7 \mathrm{~V}$ to $5 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX) }}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=12 \mu \mathrm{~A}$, $\mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}, 3 \mathrm{~mm} \times 3 \mathrm{~mm}$ QFN-16 Package

